Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1099-1109, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28774820

RESUMO

The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). The enzyme was active towards all C18-hydroperoxides with some preference to 9-HPOD. In contrast, 15-HPEPE was a poor substrate. The CYP443D1 specifically converted 9-HPOD into the oxiranyl carbinol 1, (9S,10R,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both 18O atoms from [18O2-hydroperoxy]9-HPOD were virtually quantitatively incorporated into product 1. Thus, the CYP443D1 exhibited epoxyalcohol synthase (EAS) activity. The 18O labelling data demonstrated that the reaction mechanism included three sequential steps: (1) hydroperoxyl homolysis, (2) oxy radical rearrangement into epoxyallylic radical, (3) hydroxyl rebound, resulting in oxiranyl carbinol formation. The 9-HPOT and γ-9-HPOT were also specifically converted into the oxiranyl carbinols, 15,16- and 6,7-dehydro analogues of compound 1, respectively. The 13-HPOD was converted into erythro- and threo-isomers of oxiranyl carbinol, as well as oxiranyl vinyl carbinols. The obtained results allow assignment of the name "N. vectensis EAS" (NvEAS) to CYP443D1. The NvEAS is a first EAS detected in Cnidaria.


Assuntos
Sistema Enzimático do Citocromo P-450 , Anêmonas-do-Mar , Animais , Catálise , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/química , Ácidos Linoleicos/química , Peróxidos Lipídicos/química , Anêmonas-do-Mar/enzimologia , Anêmonas-do-Mar/genética , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...